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Abstract In this paper a companding-based scheme is proposed to reduce the Peak-
to-average power ratio (PAPR) of an orthogonal frequency division multiplexing system.
At the transmitter side, a compressing polynomial function is appended to the inverse dis-
crete Fourier transform block; and at the receiver the transmitted signal is retrieved iteratively
through combining the discrete Fourier transform block with a reverse expanding function.
In the iterative algorithm the Jacobi’s method is used for solving the equations. Also, the gen-
eral form of the compressing polynomial functions is attained through the use of Daubechies
wavelet functions. As an advantage, the proposed method involves less complexity at the
transmitter compared to other PAPR reduction methods. Furthermore, it requires less increas-
ing to signal-to-noise ratio for the same bit error rate in comparison with other companding
methods. The order of compressing polynomial and the number of iterations for the pro-
posed algorithm at the receiver can be set in accordance with the performance-complexity
trade off.
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1 Introduction

Orthogonal frequency division multiplexing (OFDM) signaling has gained considerable inter-
est for high data rate transmission applications, due to its high spectral efficiency and the
immunity to frequency selective channels [1]. One major drawback of OFDM is the high
peak-to-average power ratio (PAPR) of the output signal [2]. Transmitting a signal with
high PAPR requires highly linear power amplifiers with a large back-off to avoid adjacent
channel interference due to nonlinear effects [3]. Also high values of PAPR result in low
efficient usage of the ADC and DAC word length at the analog front ends (AFE) of the
transceiver [3]. With a limited number of ADC/DAC bits the designer has to decide about
clipping the peaks, which has a deteriorating effect on OFDM signals, or burying the small
variations of the signal in the quantization noise. Therefore, dynamic range reduction plays
an important role for the application of OFDM signals in both power and band-limited
communication systems. Many PAPR reduction techniques have been proposed in the lit-
erature, each with certain advantages and disadvantages [2]. These methods can be clas-
sified into two categories. The first category of the PAPR reduction schemes, also known
as distortion-less techniques, changes the formation of the OFDM signals with high PAPR
before multicarrier modulation techniques. Coding techniques use a forward-error-correction
code set that excludes the OFDM symbols with a high PAPR, thus reducing the probabil-
ity of occurrence of a signal with high PAPR [4–6].While these schemes reduce PAPR,
they also significantly reduce the transmission rate for OFDM systems with large number
of subcarriers [2]. Phase optimization is another distortion-less method that tries to reduce
the peaks of the signal by properly rotating the channel constellation. Two phase optimiza-
tion methods are called the partial transmit sequence (PTS) [7–11] and selective mapping
(SLM) [12–14]. These methods have the disadvantages of high computational complexity
and side information overhead [2]. In [15] various modifications of the conventional PTS
and SLM schemes for achieving a low computational complexity are introduced. Some
other proposed methods in this category are tone injection [16,17], tone reservation [18–
20], and active constellation extension (ACE) [21,22]. Most of the distortion-less techniques
have restrictions on system parameters such as the number of subcarriers, frame format,
and constellation type. On the other hand, the signal distortion methods, i.e. the meth-
ods that transform the OFDM signals after multicarrier modulation, can be used without
restriction on system parameters but at a price of increased bit error rate (BER) [23]. The
simplest method in this category is clipping the peak amplitude of the OFDM signal to
some desired maximum level; but it is an irreversible nonlinear process that will cause
an unacceptable level of noise and out of band distortion in the OFDM signal [24,25].
Although spectrum interference can be reduced by a filter after clipping, the process can
cause peak regrowth after D/A conversion [26]. Another effective method in this category
is companding. Advantages such as low implementation complexity, good PAPR reduc-
tion and BER performance and no bandwidth expansion have made companding one of the
most attractive PAPR reduction techniques [2]. Companding can be considered as a type
of soft clipping method, in which OFDM signals are companded using a strictly monoton-
ically increasing transform function. Therefore the companded signals can be restored cor-
rectly by using the corresponding inverse transform function in the receiver. In [27] the
first low-complexity companding technique was proposed by Wang to reduce PAPR. It was
based on the speech processing algorithm called μ-law. Using this companding technique
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PAPR Reduction in OFDM Systems 105

small signals are enlarged, while the large signals remain unchanged. However, the aver-
age power of input signal is increased that makes companding itself even more sensitive
to the nonlinearity of the High Power Amplifier (HPA) [28]. In [29] the authors have pro-
vided the design criteria of nonlinear companding transformations to change the distrib-
ution of the original OFDM signal into a desirable distribution. They have also proposed
novel nonlinear companding transformations that change the distribution of the power or
the amplitude of the OFDM signals into uniform distribution. These functions are based
on error function. In [30] an exponential companding transform was proposed which trans-
forms the distribution of the amplitude of the original OFDM signals into a uniform dis-
tribution. The mentioned companding schemes [29,30] perform better in terms of PAPR
reduction and BER performance compared to the μ-law scheme and keep the average power
of the signal constant. In [31] two nonlinear companding schemes with iterative receivers
were proposed that also outperform the μ-law companding method, however, these methods
require additional DFT and IDFT devices. A novel companding method was introduced in
[32], which transforms the OFDM signals into trapezium distribution to provide a favorable
trade-off between the PAPR reduction and the BER by adjusting two parameters. Since all
the companding techniques are sensitive to channel noise, due to the nonlinear processing,
more PAPR reduction could lead to lower performance. Therefore, the challenging problem
with companding techniques is to reduce PAPR as much as possible while not increas-
ing the BER of the system, out-of-band distortion, and the average power of transmitted
signals.

In this paper, a method namely “polynomial-based companding technique” (PCT) is
proposed that reduces the PAPR with a polynomial-based compressing function in the trans-
mitter. In addition, using an iterative technique in the receiver results in lower increasing
in required SNR for a given BER compared to other companding methods. This method
will provide a good tradeoff between the capacity of PAPR reduction, implementation
complexity and BER performance by choosing the degree of companding polynomials
in the transmitter and the number of iterations for the recovery of original signals at
the receiver. Finally the general form of PCT functions is proposed by using Daubechies
wavelet functions. As shown in “The Simulation Results Section”, the proposed algorithm
reduces the PAPR effectively. Also, with higher order polynomials, more reduction can
be achieved. Interestingly, there is an inverse relation between the PAPR reduction abil-
ity and the BER–SNR performance of proposed method. In other words, system design-
ers can choose an appropriate polynomial order to have a desired performance-complexity
trade-off.

The rest of this paper is organized as follows. In Sect. 2, the signal model and the PAPR
problem is explained. Section 3 introduces the polynomial-based companding algorithm
through a specific set of compressing polynomials at the transmitter and iterative expand-
ing at the receiver. Then, a generalization of polynomial-based functions using well-known
Daubechies wavelet functions is proposed. The simulation results and discussions are in
Sect. 4. Finally conclusions are drawn in Sect. 5.

2 System Model

A typical OFDM system is presented in Fig. 1. As shown in this figure, the input bit stream
is mapped to a constellation space and then the stream of carrier weights X [k], after serial
to parallel conversion, is fed to the IDFT block. Let N and X [k], 0 ≤ k ≤ N − 1, denote
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Fig. 1 A typical OFDM system model

the number of subcarriers and the complex modulated symbols in the frequency domain
respectively. The output x[n] of the N -point IDFT of X [k] can be mathematically written as

x[n] = 1

N

N−1∑

k=0

X [k]e j2πkn/N , 0 ≤ n < N . (1)

The PAPR of the transmitted OFDM symbol x[n], n = 0, 1, . . . , N − 1, is defined as

PAPR(x[n]) = max|x[n]|2
E[|x[n]|2] (2)

where E stands for the expectation operator.
In the proposed method, the resulting time domain signal with high PAPR passes through

a compression block which is appended to the IDFT block at the transmitter as shown in
Fig. 1. Expansion at the receiver is also performed via an expander block combined with the
DFT block.

3 The Proposed Method

In this section, the PCT method is introduced which is based on appending a compressor
to the IDFT block at the transmitter and combining an expander with the DFT block at the
receiver. In order to reduce the PAPR, compression at the transmitter is performed by scaling
the signal based on polynomial functions, which are generalized by means of Daubechies
wavelet function. At the other side, the received signal is expanded through an iterative
technique following the DFT operation. In the following, we will explain the transmitter and
receiver units and the process of obtaining the general form of the polynomial functions in
more detail respectively.

3.1 Companding at the Transmitter

In the proposed method, the signal at the transmitter is compressed through a special family of
compressing functions. It will be shown that the order of polynomial function can be chosen
according to a performance-complexity trade off, see simulation section for more details.

In nonlinear quantization, for a robust performance, SNR of the compressor output should
ideally be independent of the probability density function (PDF) of the input. For this reason
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PAPR Reduction in OFDM Systems 107

the compressing function must be logarithmic [33]. However, in an iterative method, the
logarithmic function seems not to be proper. Although the μ-law algorithm [27] reduces the
PAPR effectively, as it is a logarithmic function, it cannot be employed here as a compander.
Hence, the goal is to have low order polynomials as close as possible to the μ-law function.

The compressing function at the transmitter which is applied on a normalized signal is a
nonlinear polynomial which reduces the PAPR by increasing the average signal energy while
keeping the peak constant. To achieve the required characteristics for the curve, the following
restrictions must be applied:

– In order to retrieve the compressed signal at the receiver, the mapping has to be one-to-
one and therefore the function must be invertible in the range of [−1,1]. Obviously, it has
to be an increasing function to keep the sign of the input data. Thus, its extreme points
must not be positioned in this range.

– The polynomial function must have odd symmetry, so it can do identically in both [−1,0]
and [0,1]; therefore the terms with even degrees vanish and the origin is the inflection
point of the curve.

– Since input data to the block is normalized, the function must take its minimum value at
the point (−1,−1) and its maximum value at the point (1,1) in the mentioned range.

– For reducing the PAPR, the data values of low magnitude will be magnified and those of
higher magnitude will be kept in a close higher range. Therefore, it is essential to have
the lowest slope (ideally zero) at the extreme points and the steepest possible slope at the
origin.

– Producing a polynomial function, which is as close as possible to the μ-law compressing
function, implies some inflection points in the range of [−1,1]. In our methods we limited
the number of inflection points to one in the origin.

Accordingly, the polynomial coefficients are computed. Because of the second require-
ment, any polynomial function with an odd order satisfies the restrictions. Let us define

f (x) = apx p + ap−2x p−2 + · · · + a5x5 + a3x3 + a1x (3)

where p is an odd number. Coefficients for polynomials of order 3, 5 and 7 are computed as
follows

p = 3 ⇒ a3 = −1/2, a1 = 3/2

p = 5 ⇒ a5 = 3/8, a3 = −5/4, a1 = 15/8

p = 7 ⇒ a7 = −5/16, a5 = 21/16, a3 = −35/16, a1 = 35/16 (4)

Paying attention to a1, it can be deduced that the higher order polynomials will lead to
sharper slopes at the origin. Hence, more reduction in PAPR can be achieved. Due to the
lack of known parameters compared to the unknown ones, the coefficients of higher order
polynomials cannot be directly calculated in the same manner. In Sect. 3.4, a method is
offered to generalize the specified curves for larger p’s.

The time domain signal, x[n] = {x0, x1, . . . , xN−1}, is acquired via IDFT block in (1).
To append the polynomial-based compressor to the IDFT, real and imaginary parts of x[n]
should be processed separately

�{x[n]} = 1

N

N−1∑

k=0

Ar [n, k] and �{x[n]} = 1

N

N−1∑

k=0

Ai [n, k] (5)

where
[
Ar [n, k] Ai [n, k]] =[�{X [k]} �{X [k]}] A (6)
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and

A =
[

cos
( 2πkn

N

)
sin

( 2πkn
N

)

− sin
( 2πkn

N

)
cos

( 2πkn
N

)
]

(7)

In the conventional companding paradigm, since the complex input to the IDFT has
Hermitian symmetry, the output is real. Therefore, compression is applied to the amplitude
of the signal. In this paper, because of no symmetry, the real and imaginary parts of the time
domain signal should be compressed separately. In order to append the compressing function
to the IDFT, polynomials of any order meeting the required conditions can be applied on the
sequences Re{x[n]} and I m{x[n]}. Applying the pth order leads to

�{y[n]}=
p−1

2∑

j=0

a(2 j+1)

(
1

N

N−1∑

k=0

Ar [n, k]
)(2 j+1)

�{y[n]}=
p−1

2∑

j=0

a(2 j+1)

(
1

N

N−1∑

k=0

Ai [n, k]
)(2 j+1)

(8)

where y[n] represents the compressed signal to be transmitted through the channel.
In the following subsection, an iterative method for the combined expanding/DFT blocks

at the receiver is introduced. At first, the method is examined over a noiseless channel,
afterwards, it is used for the additive white Gaussian noise (AWGN) one.

3.2 Expanding at the Receiver

At this stage the problem is to find the frequency domain sequence X [k] of length N using
the compressed time domain signal y[n] with the same length. As explained in Sect. 3.1, at
the transmitter side, y[n] is related to X [k] through a set of nonlinear equations, where n
and k meet 0 ≤ n ≤ N − 1 and 0 ≤ k ≤ N − 1. To solve the set of 2N equations with
2N known and 2N unknown parameters, an iterative method is proposed. By performing
adequate number of iterations, the required SNR for a given BER will be lessened compared
to non-iterative solution. In this approach, the required number of iterations for given BER
and SNR varies with different constellations, DFT sizes and polynomial orders. Due to using
an iterative technique, the functions used in the transmitter should be such ones from which
the first order of the terms Ar [n, k] and Ai [n, k] and then the unknown values of �{X [k]}
and �{X [k]} can be derived at any step to enter the next one. Accordingly, using functions
such as signum, logarithmic, and exponential, taking absolute values, and using complex
magnitudes are not admissible. In this case, polynomial functions seem to be appropriate
choices to satisfy the above characteristic and be employed as the compressing function.

Although the relations are nonlinear, each of the unknown values can be derived through
the equations. Thus, any linear iterative solution can be exploited. The Jacobi method is the
one employed here [34].

For the first iteration, initial values for X [k] are required. As can be seen in Fig. 2, there
is a clear resemblance between constellation map of the compressed signal and that of the
original signal. So, the DFT of received signal, y[n], can yield a good approximation for X [k].
To start each iteration, the terms A(m)

r [n, k] and A(m)
i [n, k] can be obtained at the beginning

of the iteration as follows
[

A(m)
r [n, k] A(m)

i [n, k]
]

= [�{X (m)[k]} �{X (m)[k]} ]
A (9)
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Fig. 2 256 points in 16-QAM constellation. a Original signal. b Compressed signal

where m represents the iteration number. Then x̂ (m)[n], Bm
r [n, k] and Bm

i [n, k] are computed
in the following manner. Here, only the real part of equations are considered. Imaginary parts,
�{x̂ (m)[n]} and Bm

i [n, k], can be computed in the same manner.

�{x̂ (m)[n]} =
p−1

2∑

j=0

a(2 j+1)

(
1

N

N−1∑

k=0

A(m)
r [n, k]

)(2 j+1)

(10)

B(m)
r [n, k] = N

a1

(
�{y[n]} −

(
�{x̂ (m)[n]} − a1

N
A(m)

r [n, k]
))

(11)

Next, we compute X̂ (m)[n, k] as

[�{X̂ (m)[n, k]} �{X̂ (m)[n, k]} ] =
[

B(m)
r [n, k] B(m)

i [n, k]
]

A−1 (12)

Equation (12) shows that for any k, there will be N results for �{X̂ (m)[n, k]} and
�{X̂ (m)[n, k]}. It is deduced that from the simulation that the average of the N calculated
values is the best candidate to replace the previous values of �{X (m)[k]} and �{X (m)[k]}, or
equivalently X (m+1)[k], for the next iteration.

In general, for an ideal channel, after a few iterations, the results will converge to the
desired values. However, for low SNR conditions, the obtained values of (1/N )Ar [n, k] and
(1/N )Ai [n, k] lie outside the range [−1,1]. Since, the extreme points of the polynomials are
located at the beginning and end of this range and also our polynomial functions have a high
derivative out of the mentioned range, the obtained values beyond [−1,1] will be exposed
to the high derivative part of the function. During the next iterations, the results will move
farther from the original signal values. Consequently, the values of �{X [k]} and �{X [k]}
will drastically diverge and thus, the algorithm will ultimately turn towards divergence.

For AWGN channel, to prevent the algorithm from diverging, the out-of-range values of
the (1/N )Ar [n, k] and (1/N )Ai [n, k], while keeping their signs, can be substituted for the
values of the extreme points. As the simplest but not efficient way, it guarantees the system-
convergence. More efficiently, one may suggest using a linear function such as ramp with an
arbitrary slope outside the [−1,1] range. It is inferred from the simulation results that its slope
could be determined to achieve the best efficiency in terms of system-performance. In other
words, for any SNR value, it is possible to choose a proper ramp function with the specified
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slope, which is able to yield the most accurate converged responses. Using this technique for
noisy channels will result in more iterations to converge compared to the noiseless situation.

3.3 Complexity Analysis

At the transmitter, for each symbol in an OFDM block, the proposed method evaluates a
polynomial of order p. Therefore, the complexity of this method is O(p) per symbol or
O(N p) per each OFDM block. The complexity of the companding algorithm is similar to
that of other well-known companding schemes introduced in [27,29,30] and [32] since in
all of these methods a nonlinear function has to be evaluated for each symbol in the OFDM
block. However, our proposed method could be implemented easier since our companding
function is a polynomial.

The complexity of expanding algorithm per iterations per block is O(N 2 + N 2 p + N 2 +
N 3). The first N 2 is because in (9) we have to calculate N 2 values by doing a constant size
matrix multiplication. Then in (10), for each symbol, the algorithm evaluates a polynomial of
order p for given value of 1

N

∑N−1
k=0 A(m)

r [n, k], which requires N calculations on its own. This
yields the term N 2 p in the order of complexity. Next in (11) again we have to do N 2 constant
time operations. Finally, for each k, we have to calculate �{X̂ (m)[n, k]},�{X̂ (m)[n, k]} for
n = 0, . . . , N − 1 and then average over them to find the next X (m+1)[k]. This results in the
term N 3 in the order of complexity. This leads to a more computationally complex algorithm
in the receiver compared to other well-known companding schemes in the literature.

3.4 Generalized Compressing Function Using Daubechies Wavelet Functions

Obtaining proposed curves and specifying their characteristics in Sect. 3.1, it can be verified
that there exist similarities between companding polynomials and Daubechies wavelet func-
tions [35], but some modifications such as scaling and time shifitng are needed to convert
Daubechies functions to the compressing ones.

Daubechies wavelets of general order are defined in the following form:

Pk(x) = 2
k−1∑

n=0

(
k + n − 1

n

)
xn(1 − x)k (13)

while k = 1, 2, 3, . . . and the order of Pk(x) is denoted through k, such that O(Pk(x)) =
2k − 1.

These polynomials have some remarkable properties such as passing smoothly from 2
to 0 (with the exception of k = 1), zero slope at both x = 0 and x = 1 and having a
inflection point at (0.5, 1). These properties make this family of curves desirable for deriving
companding functions.

In order to obtain the desired compressing functions, it is required to modify Daubechies
wavelets. Using a linear transformation of x = (t + 1)/2, the general form of compressing
functions will be:

f (t) = −(Pk(t) − 1) (14)

It is clear that O( f (t)) = 2k − 1. Finally, the above relation will bring about the result as
follows:
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fm(t) = 1 −
(

1

2

) m−1
2

(1 − t)
m+1

2

m−1
2∑

n=0

(
1

2

)n ( m−1
2 + n

n

)
(t + 1)n where m = 2k − 1

(15)

Here m stands for the polynomial order. It is evident that not only (15) covers all the results
obtained in Sect. 3.1, for orders 3, 5 and 7, but also polynomials of general order can be
simply attained.

4 The Simulation Results

In order to analyze the operation of the system in terms of PAPR reduction and BER per-
formance and their relationship for the proposed algorithm, 105 randomly generated data
modulated by 64-QAM constellation map and N = 2, 048 subcarriers is used for PAPR-
CCDF and power spectrum density simulations and 64-QAM modulation and N = 256
subcarriers were used for BER–SNR performance evaluation. The AWGN channel without
channel encoding is employed in our experiments. Also, to evaluate the performance of the
proposed method in terms of PAPR reduction and BER–SNR performance, we have com-
pared our results with three other well-known companding methods. These three methods
are uniform companding [29], exponential companding [30] and trapezoidal companding
[32]. It is worth mentioning that as the methods introduced in [29,30,32] outperform the
conventional μ-law companding technique in terms of PAPR reduction and BER-SNR per-
formance, and in order to represent the figures more clearly, we have not included the results
associated with μ-law method. The results are presented in following order. First CCDF of
the required PAPR is presented. Then the effect of iteration and polynomial order on improv-
ing system-performance for different polynomial orders of PCT with a fixed DFT size and
constellation is expressed. After that the relation between DFT size and complexity of the
receiver in the form of BER–SNR plots is shown. The effect of slope of the ramp function
on the system-performance and finally problem of power spectral density (PSD) are also
examined.

4.1 CCDF of the Required PAPR

The PAPR-CCDF for the original signal, compressed signals with polynomials of order
3, 7, 11, 25, 37, 55, uniform compressed signal and exponential compressed signal with
d = 2 and trapezoidal compressed signal with q = 2

3 with a fixed DFT size (N = 2, 048)
and 64-QAM-constellation is depicted in Fig. 3. According to performance-complexity trade-
off, it is not feasible to simulate the higher order polynomials.

As is observed, the algorithm reduces the PAPR of the signal effectively. Also, with higher
order polynomials, more reduction can be achieved. As shown in this figure, by choosing a
proper polynomial order, this method can outperform the other well known methods in terms
of PAPR reduction.

4.2 SNR required for a given BER

Figure 4 illustrates the effect of number of iterations on system-performance where the 7th
order polynomial is employed. Since there is no differences between different curves for
low SNR values, i.e. less than 10dB, DFT with no iteration can be used. Focusing on the
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negligible differences between iterations more than 5, it is obvious that after a certain number
of iterations, the performance cannot improve considerably. We can heuristically define an
iteration after which, performance of the system for a given BER and polynomial order will
not improve noticeably as a “suitable” iteration. It is not a precise definition, in other words
system designers can use their own suitable iteration for a fixed polynomial order in order to
have an appropriate performance-complexity trade-off.

Figure 5 shows the effect of different polynomial orders, where “suitable” number of
iterations is chosen at the receiver to expand the signals. In this figure the SNR–BER plot
for PCT polynomials of order 3, 7, 11 and 25 with 3, 9, 49 and 49 iterations, the original not
companded signal, uniform compressed signal, exponential compressed signal with d = 2,
and trapezoidal compressed signal with q = 2

3 are depicted. It is concluded that there is an
inverse relation between the PAPR reduction ability and the BER–SNR performance of PCT
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Fig. 5 System performance for original and compressed signals
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Fig. 6 The system-performance for 16-QAM, 5th order polynomial, 7 iteration and different DFT sizes

signals. As is shown, the 3rd order polynomial outperforms the higher orders of PCT as well
as the other companding techniques in terms of BER–SNR performance.

It is apparent that using the constellation with more points increases the SNR of the
system for a given BER, however, using this constellation gives us more transmission rate.
Nevertheless, what we are concerned about is whether the suitable iteration and consequently
computational complexity for the same performance change in the case that we use the same
constellation and polynomial order but different DFT sizes.

The system-performance for 16-QAM, 5th order polynomial, 7 iterations and different
DFT sizes is shown in Fig. 6. It is understood that under the circumstance of fixed polynomial
order, constellation and SNR of the system, the number of iterations needed for the given BER
and therefore complexity of the system never increases. For this purpose, SNR–BER plots
for the 5th polynomial order, 16-QAM constellation and N = 64, 128, 256 and 7 iteration
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Table 1 Effect of ramp slope
on improving performance
of the system

Ramp slope 0 0.25 0.5 1 2 4 6

SNR 25.29 24.19 23.57 23.15 22.93 22.92 22.90
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Fig. 7 Power spectrum density of the original and compressed OFDM signals

for each are shown in Fig. 6. It can be seen that, under the same condition of constellation,
polynomial order and number of iterations, with the increase in the DFT size from 64 to 256
the performance of the system does not vary considerably. This is a noticeable point that
with the large amount of sub-carriers in recent OFDM systems, performance of the system
not only never decreases but also it is probable to improve the system-performance with no
increase in the complexity of the system.

4.3 Effect of Ramp on the Performance

In order to avoid the system from divergence, a ramp function outside [−1,1] is considered.
In this part, effect of the ramp slope on the performance of the system is examined. Table 1
shows the required SNR of the system when BER = 10−4 for the 5th order polynomial and
7th iteration. A system designer can omit the effect of ramp slope on the performance, but
to optimize the design, the ramp slope should be considered. It should be noted that all the
results presented in other parts are obtained through slope 6.

4.4 Power Spectrum Density

Many PAPR reduction schemes cause spectrum side-lobes generation in PSD plot. The
spectrum of the uncompressed and compressed OFDM signals by different orders of PCT,
uniform, exponential and trapezoidal companding methods are shown in Fig. 7. It can be
seen that at the frequency twice the bandwidth of the main lobe,approximately, there is
about 60 dB attenuation in the original OFDM spectrum, but this attenuation is about 40 dB
for the compressed signal by the 3rd order polynomial. This attenuation decreases as the
order of polynomials increases. It is observed that the 3rd order PCT has a better spectrum
characteristic and spectral regrowth caused by PAPR reduction compared to the other three
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methods. In practical systems, the band-pass filter (BPF) is necessary but the BPF by itself
causes the degradation of the error rate performance.

5 Conclusion

In this paper, a PAPR reduction technique called PCT was introduced using polynomial-
based compressing in the transmitter and an iterative expanding algorithm at the receiver.
In addition, the general form of PCT functions was derived by using Daubechies wavelet
functions. Results from different simulations showed that increasing the polynomial order
reduces the PAPR while decreasing the BER–SNR performance. Running more iterations at
the receiver improved the performance in exchange for more computation. In the procedure
of designing OFDM systems, the polynomial order and the suitable number of iterations can
be selected based on the above results and the specific requirements that the system must
meet.
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