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Abstract—This paper presents a method of sequence
estimation using joint data and channel estimation for the
frequency selective Rayleigh fading channel. To detect the
transmitted data sequence, a generalized Viterbi algorithm is
employed in which each trellis branch metric is computed
based on an estimation of the channel impulse response. The
information from the survivor path estimator is passed to the
next branch for the next channel estimate. A linear model is
used for the fading channel. An ARMA representation for the
channel is derived, making it possible to employ the Kalman
filter as the best estimator for the impulse response of the
channel. For IS-54 formatted data transmission the results
obtained with the Kalman filter are shown to be superior to
those of other existing methods.

1. INTRODUCTION

MLSE is the optimum detection method for data signals
received over a frequency-selective multipath fading channel.
Various kinds of MLSEs are introduced to combat the
degradation of error performance due to the severe IST in fast
fading channels [1] [2] [3]. MLSE is implemented using the
Viterbi algorithm (VA) to reduce its complexity and generally all
versions of MLSE receivers require estimates of the channel
impulse response (CIR).

An inherent difficulty associated with applying the estimation
methods is that the unknown transmitted data is required for the
estimator adaptation. In the “decision directed mode” the actual
transmitted data, which is not available at the receiver a priori, is
replaced by an estimate of the data stream. However, there is
usually a “decision delay” inherent in the VA, that causes poor
tracking performance. To reduce the effects of this estimation
delay three main procedures have been developed [4]. One
method uses a fixed delay VA [5] but it suffers from degradation
in tracking due to the existing decision delay. The second method
estimates CIR by an adaptive decision feedback equalizer (DFE)
without any delay in decision [6], but the error propagation
problem has a serious effect on the BER performance.

The third approach [2]1[4][7] is an adaptive MLSE in which the
CIR is estimated along the surviving paths associated with each
state of the trellis. Each surviving path maintains its own estimate
of the channel based on the hypothesized transmitted data
sequence. This method eliminates the decision delay and its
performance is superior to other methods. In this method channel
estimation is usually performed via LMS or RLS algorithms in a
generalized VA and the performance of the receiver strongly
depends on how well the estimator can track the rapid changes of
the CIR in the fast fading conditions.

In this paper we are concerned with differentially coherent
detection of DQPSK signals over frequency selective Rayleigh
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fading channels. We assume a linear time-varying model for the
channel and we obtain a new ARMA representation for the CIR
based on the channel parameters. This model gives more
information about the channel at the receiver compared to what is
reported in similar algorithms. We have considered a
communication system, very similar to that described in the IS-
54 standard, where digital data signals are packed into TDMA
blocks starting with a preamble training sequence.

This paper is organized as follows. Following a short overview
of the mobile communication system under consideration in
section 2, we present a model for the channel and derive the
ARMA representation for the CIR in section 3. In section 4, we
introduce the formulation of the Kalman filter and RLS
algorithm. The joint data and channel estimation algorithm based
on using a set of Kalman filters is described in section 5, and
simulation results are presented in section 6. Finally concluding
remarks are given in section 7.

2. THE COMMUNICATION SYSTEM

In the North American narrowband TDMA standard (IS-54),
the n/4 -shifted DQPSK technique is employed. We consider a
DQPSK signaling scheme instead, which should not lead to a
significant difference in performance. The simplified baseband
equivalent system is shown in Fig. 1. The data sequence {q;/,
with symbol period 7, is input to a filter whose impulse response,
f(t), has the bandlimited raised-cosine spectrum. The transmitted
signal is:

s(f) = Zaif(t—iT). ()

12

The equivalent low-pass time-variant impulse response of a
frequency selective Rayleigh fading channel, c(t,u), represents
the channel response at time ¢ due to an impulse applied at time
t-u. ¢(t,u) is usually modeled as a wide-sense stationary
uncorrelated scattering process.

It is assumed that the receiver samples the incoming signal at
the rate 7=o T, and by redefining the information sequence as

k .
b, = Ara &mteger o
0 otherwise
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i=0

Fig. 1: The Signal Model for the communication system.

1198



the sampled signal, z;, can be written as
B
- 3
Ly = Ebk—ihk,i"'nk ®)
i=0

where h; ; is the impulse response of the equivalent channel at
time k due to an impulse that was applied i time units earlier, it
describes both f{t) and c(t,u) blocks of Fig. 1 in the discrete time
domain [1], and its total length is (B + 1) . The LPF is assumed to
have a flat frequency response in the transmission band, and ny, is
additive white Gaussian noise.

To derive the state space model for the channel consider the
(B+1) dimensional complex Gaussian random vector at
sampling time k

hy = (b o 1 ...,hk’B)T 4)

and define the states of the state-space model as a vector
composed of r subsequent impulse responses

X = (hphy_phy_giby_ 7 ©

hy, is a wide-sense stationary Gaussian random vector and has an
autoregressive moving average (ARMA) representation:

h=Fh, _,+..+Fh _ +Gwi+..+G,w;_, (6)
The vector process x;, ; can be written as:

F,F,. . F, G,G,..G,|| "
1 0..0 0 0 .. 0/[[wo1
X, = X, +
k41500 I .. 0%*T|0 o 0 *
00.10 0 0 0w, _,
or
Xr+1 = Fx +Gw, ®)

where F and G are r(B+1lyxr(B+1) and
r(B+1) x (m+1) (B+1) matrices respectively, and wy is a
(B+1) (m+1) x1 zero mean white Gaussian vector process
with the covariance matrix defined as E {w,w;} = @83,

Also, by defining the r(B+1) x1 vector H as

Hy = (b by by 0,0 0) ©)

where (r—1) x (B+1) zeros are inserted after bk—[} , we can
write

2, = Hx+n, (10)

and the covariance of the additive Gaussian noise
is E {nkan} = Nuékl .

Equations (8) and (10) describe a linear time varying system as
shown in Fig2, where x, is the state vector of this system and F is
the state transition matrix. Hy is the measurement matrix and the
received signal z; can be assumed to be a noisy measurement of
the state of the system. In the following section we will consider
the multiplicative distortion effect of Rayleigh fading channels

{Wk} xk+] X {Zk}

] G ——@—» De]ay I—IkT F

{ng}

F

Fig. 2: Linear time varying model of signal transmission over a
Rayleigh fading channel.
and based on that we will build another model for the channel.
Then we will define the parameters of the time varying linear
system of Fig. 2 according to our new model.

3. THE CHANNEL MODEL

The baseband impulse response of a two-ray fading channel
can be written as:

c(t,u) =(xo(t)ﬁ(t—u)+0c1(t)5(t—u—’c) ¢8))

where o, and o, are Gaussian complex random coefficients,
and their real and imaginary parts are independent Gaussian
processes with the same mean and variances. Simulation of the
fading spectrum appropriate to mobile radio is obtained by
properly shaping the spectrum of these Gaussian processes, i.e.
by choosing an appropriate characteristic for the two fading
filters in Fig. 3.

It is important to notice that although the spectrum of a
Gaussian process is affected by filtering, the PDF is not, so the
process at the output of the fading filter remains Gaussian. The
required spectrum for the fading filter for isotropic scattering and
an omnidirectional antenna is represented by [8] as

E, 1 A<f
A = anf,, {— (1)2 (12)
I
0 elsewhere

It is too difficult to design a filter that truly follows this shape, so
an approximation has to be sought [8].

The fading filter can be approximated by a third order filter [9]
and the transfer function in the z domain can be written as

D
1-Az '-Bz?-Cz~

P(z) = (13)

3

Consider the channel as the combination of a raised-cosine
filter and a time variant fading channel, as shown in Fig. 4(a).

Complex G xk L Fading
Noise Filter
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Complex Gaussian
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Fig. 3: The fading channel model

Fading
Filter
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The response of the fading channel at time » to an impulse
applied at time k is shown in Fig. 4(b) and can be expressed as

c(k,n—k)zOco(k)ﬁ(n—k)+0cl(k)8(n—k—'t) (14)

The response of this time variant system to an arbitrary input u(n)
can be written as

o(n) =Y e(m,n—m)u(m) (15)

For the cascade of two systems we want to find the response to
S(n—k), or by, This is equivalent to finding the response of
the fading channel to the input signal f{rn-k) and from (15) we
have

hk’n_k=2c‘(m,n—m)f(m—k) (16)

Using (14), hy .., can be expressed as

=2[(x0 (M) (n=m) +o, (M 8(n=m=)1f(m=k)  (17)

m

=a (mf(n—k) +0 (n-1)f(n-k-1) (18)

and if we define i=n-k, (18) becomes
hk’i = oz()(k+i)f(i) +o k+i-Tf(i-1) (19)

In (4) the impulse response is defined as the vector h; with
components #y ;, and (19) defines the ith component of the vector
hy. On the other hand, from Fig. 3 we can see that o (k+1{) and
O, (k+i-1T) are outputs of the fading filter and can be written as

o (k+i) = x(k+i)*p (k) (20)
and
o, (k+i=1) = y(k+i-1)*p (k) (21)

where p(k) is the impulse response of the fading filter. Hence (19)
becomes

hy =le(k+ ik p (W1 + Dy (k+i-Dxp1f_, P2
or

hk,i: [fix(k+i) +f;,_y(k+i-1)]*p (k) (23)

Equation (23) suggests that the impulse response of the
combination of f{¢), and the fading channel, can be obtained at the
output of the fading filter, if the input is the Gaussian noise
process w, ; as shown in Fig. 5.

c(k,n-k)
o (k)
7y
_—I fin) l——lc(k,n-k)'——» n
@ k  k+t
®)

Fig. 4: (a) The combination of raised-cosine filter and fading channel,

(b) Time variant impulse response of the fading channel.
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Fig. 5: Illustration of the channel impulse response as the
output of the fading filter.

Given the transfer function of the fading filter P(z) as in (13),
one can obtain the ARMA representation of the channel impulse
response as

hy ;= Ahy_y ;+Bh,_, ;+Ch, 5 +Dw 24)

and if we write this equation for different values of i the matrix
form of (6) will become

h, = Alh, _,+Blh, ,+CIh, +DIw, 25)

From (25) one can easily find the matrices F and G and (8)
becomes

Al BI CI DI
Xpo1 =1 0 0]x+|0|w; (26)
010 0

where I'isa (B+1) x (B+ 1) unit matrix.

H is another parameter of the linear system of Fig. 2 and is
defined in (9). This vector is different for each hypothesis in the
receiver and depends on the hypothesized transmitted signal
sequence.

As mentioned before, the covariance matrix of the Gaussian
noise process Wi, i is E{w,w;} = stl and the matrix Q can
be obtained using the definition

Wk,izfix(k'”) +fi_y(k+i-1) Q27
The element on the ith row and the jth column of Q is

q;; = E{w, vy j} (28)
or

=E{[fx(k+i) +f;_yk+i-1)]
x [fx tk+)) +fj_ty(k+j—‘c)]}

x and y are white processes with variances (5)2( and Gﬁ,therefore
q;jis zero for i#j and for the diagonal elements of @ we obtain

a9, = fio2+ rci 9

Having defined the parameters of the linear system of Fig. 2,
we are ready to employ an estimation method for estimating the
impulse response of the channel.

4. ESTIMATION METHODS

A. The Kalman Filter

The Kalman filter is an optimal linear minimum variance
estimator. The equations (8) and (10) form a Kalman filtering
problem; and the following solution is well known for the
Kalman Filter:
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Measurement Update Equations:

Tp-1
K, = P HR, GD
T
R, =HPH +N, (32)
Py =P ~KHP, (33)
Time Update Equations:
Rpyr = Fly G4
T T
P, = FPy F" +GQOG (35)

Xk is the estimate of x, and P}, is the error covariance matrix of
state estimates. By the measurement update equations, the
Kalman filter estimates the state vector or the CIR based on a
noisy measurement. Then, using time update equations, the filter
updates its estimate according to its knowledge of the linear
system parameters.

B. The RLS Algorithm (kalman Algorithm)

The RLS algorithm is a least squares method to minimize a cost
function. The RLS algorithm with exponential weighting uses the
cost function & (i) given by

EG) = ) MKz - Hby
k=1

where A is a forgetting factor and the cost function is minimized
by the following algorithm

2 (36)

Rpp1 = 2+ K (2, —H %) (37)
K, = PHR 38)
T
R, = HP,H, +)\ 39)
— -1
Pyyy = V(P - KHPY (40)

We can observe that the RLS algorithm is basically the same as
the measurement update equations of the Kalman filter. By these
equations, the estimator uses the information of the received
signal to update its state estimates, while in the time update
equations the Kalman filter uses its knowledge about the linear
system and updates the estimated values at the next discrete time
step according to this information. Hence, when we do not have
enough information about the channel system, the RLS algorithm
is a good choice and when the channel parameters are known we
can implement the Kalman filter which is the optimal estimator.

5. JOINT DATA AND CHANNEL ESTIMATION

MLSE is implemented via the Viterbi algorithm for
communication over a known channel, and in the case of an
unknown channel, an estimate of the channel impulse response is
required at the receiver. Also, both the Kalman filter and the RLS
algorithm require the vector Hy, which depends on the
transmitted data, however, the transmitted data is not available at
the receiver.

1201

SO S0
{Es1 ESI
1Es2 ES2
1ES3 ES3
Bsal2 PN ES4|
S1 S1 S1

Fig. 6: The generalized Viterbi algorithm with channel estimators
on trellis branches.

Channel estimation is usually performed by using the LMS or
RLS algorithms in a decision directed method. In this method the
detected data is used for channel estimation and it leads to an
inherent decision delay which is not desired. To avoid the
decision delay the method of joint data and channel estimation
has been proposed by some authors[2]{7]. In this method, there is
a channel estimate for every possible sequence, and to overcome
the problem of uncertainty in H; we build Kalman filters for all
of the possible hypothesized H), vectors. However, the direct
implementation of this exhaustive method is too difficult, as the
required computation grows exponentially with the sequence
length. The implementation can be made possible by using a
generalized Viterbi algorithm, where each surviving path keeps
and updates its own channel estimate.

Fig. 6 shows a simple trellis diagram with the channel
estimators on each branch. Each estimator considers a
hypothesized transmitted sequence and estimates the CIR based
on this hypothesis. Then, after computing the branch metrics and
choosing the survivor path, the states of the estimators on each
surviving path will be passed to the estimators of the next stage.
In Fig. 6, assume that branches numbered 1 and 2 are the
surviving paths to SO and S1. Hence, the current state of the
estimator ES1 determines the initial conditions of estimators ES1
and ES2 in the next stage; and also, the initial conditions of ES3
and ES4 will be determined by the current state of ES2. Each
estimator will use it’s own hypothesis and the information of the
surviving path to build the vector Hy. By this method, it is
guaranteed that we are using the data sequence of the shortest
path for the channel estimation along the same path, which is
obviously the best available information at the receiver. This
method also eliminates the problem of decision delay.

Using the channel model of section 3 makes it possible to
employ the Kalman estimator. The parameters of the channel
fading IIR filter in equation (13) can be found according to the
maximum Doppler frequency shift, and the time update
equations of the Kalman filter can be implemented using these
parameters.

In the next section, we present the simulation results where the
effect of using the Kalman filter on lowering the bit error rate is
studied.

6. SIMULATION RESULTS

In the computer simulations, the modulation scheme employed
is differentially coherent QPSK, with a symbol rate of 25
ksymbol/s. As in the 1S-54 standard, the data sequence is
arranged into 162 symbol frames. The first 14 symbols of each
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Fig. 7: Simulation results with different estimation methods.

frame is a training preamble sequence to help the adaptation of
the channel estimator. The transmitting and receiving filters are
FIR filters with a square-root-raised cosine frequency response
with excess bandwidth of 25%. The receiver takes 3 samples per
symbol interval and the complex samples are processed by the
digital processor to detect the transmitted data. The fading
channel is simulated as a symbol-spaced two-path model with
time varying complex coefficients. The two fading paths are
independent with equal strength, and are implemented as shown
in the model of Fig. 3.

The total length of the channel impulse response is 2 symbol
intervals and there are four possible states in the trellis diagram.
After each state in the trellis there are four possible states in the
next stage. In some methods [7], when several paths enter one
state, K of them with the lowest accumulated least squares error
are retained and the others are discarded. This method leads to
better detection results at the expense of more computation. In
our simulations we choose X=1 and we focus our attention on the
comparison of different methods. However, implementing the
simulation for bigger K is always possible with any of the
estimation methods.

Fig. 7 shows the simulation results for a vehicle speed of 100
km/h. The BER performance of different estimators are compared
here. In each simulation different channel estimators are used to
estimate the channel impulse response on every received sample.
The performance results of the RLS algorithm is superior to that
of LMS algorithm by about 3 dB at a BER=10"3. Choosing the
Kalman estimator provides 7 dB improvement in performance
over the LMS algorithm at the same BER.
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Fig. 8: The result of changing the estimation rate for the Kalman
estimator.
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Fig. 9: The effect of error in estimation of Doppler frequency shift,
using the Kalman Filter.

The last curve is for the case of data detection over a known
channel. In this case we have assumed that the exact channel
impulse response is always present at the receiver and there is no
need to estimate it. Of course this situation is not possible in a
practical implementation, and this can be looked at as an error
free estimation method giving a lower BER bound for
comparison. The performance of the Kalman filter is about 2 dB
poorer than the best possible results obtained with a known
channel at a BER=10"". By considering a larger value for X it is
possible to attain better performance and reduce this gap.

When the channel impulse response does not change very
rapidly, the channel estimation can be performed at a lower rate.
This leads to less computation at the receiver. Fig. 8 compares
the results for the Kalman estimator for the situation of one
channel estimation every symbol interval and the situation of one
channel estimation every sample interval which is 3 times longer.
As we can see there is only a difference of about 1.5dB at a
BER=10"* between the two methods, which in some cases, might
be tolerated to reduce the complexity of the receiver.

As mentioned before, to employ the Kalman filter estimator
the receiver computes the matrices F and G based on its
assumption about the Doppler frequency shift. In Fig. 9 we can
observe the effect of error in the estimation of the Doppler
frequency shift. The curve labeled 100S-100E is for the normal
case where the actual speed of the vehicle 1s 100 km/h and it is
correctly assumed as 100 km/h in the receiver. The curves 150S-
100E and 50S-100E show the situation where the actual speed is
150 and 50 km/h, respectively, but in both cases the speed is
assumed to be 100 kmv/h at the receiver. And finally for the 50S-
SOE curve the receiver assumes the correct speed for a vehicle
with the speed of 50 km/h.

In Fig. 9 the dashed lines show the situation when the
estimation of the vehicle speed is in error by S0 km/h and in both
cases the performance is about 2 to 4 dB poorer than the case
where we assume the correct speed for the vehicle. It can be
easily observed that we can always attain better results than what
we are expecting by overestimating the speed. By accepting a
reasonable margin in BER performance, one may assign a
limited number of speeds and switch from one preselected speed
threshold to another when the vehicle speed changes.

In the RLS algorithm the overall BER performance depends on
the chosen value for the forgetting factor, A. Fig. 10 shows the
BER curves for different values of A. It can be seen that for small

1202



Eb/N, bigger values of A yield better results, while for high Eb/N
values, A should be smaller.

The RLS algorithm minimizes the average weighted squared
error of (36), over an interval which is determined by A. The
above consequence means that in poor Eb/N conditions the
estimator should consider a larger interval to minimize the cost
function, while for high Eb/N values minimization over smaller
intervals yields better performance.

From the above results, the superiority of the Kalman filter is
clearly evident. The Kalman filter shows the best tracking
performance for rapidly changing time-variant channels,
followed by the RLS algorithm as the next best choice as a good
estimator with fast tracking. However, in spite of their superior
tracking performance, the Kalman filter and the RLS algorithm
have two disadvantages. One is the sensitivity of these recursive
algorithms to round off noise. This may cause numerical
instabilities such that algorithm may diverge due to this round off
noise.

There are different implementation methods for the Kalman
filter [10] and studies show that some implementations are more
robust against round off errors. The “square root” filter
implementations are frequently employed to maintain the
required robustness against error propagation in recursive
algorithms. For examples of Kalman filter implementations the
reader is referred to [11-14].

The second problem with the Kalman filter and the RLS
method is that these algorithms are computationally intensive.
The complexity of the Kalman filter is proportional to N?, and for
the RLS algorithm it is proportional to N?, where N is the number
of states. The heavy computational burden originates from the
iterative processing of the matrix operations.

The suitability of systolic arrays for matrix computations has
prompted their application to the Kalman filter. In the literature,
there have been several VLSI systolic array designs for the
Kalman filter [10], and alternative systolic Kalman filters exhibit
different size, speed and efficiency trade-offs. Using systolic
architectures one can speed up the matrix computations and make
the algorithm suitable for real time applications.

7. CONCLUSIONS

In this paper we proposed a sequence estimation technique
using joint data and channel estimation over the frequency
selective Rayleigh fading channel. In this method a generalized

1 : :

1 % A=201 X
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T a S ELL
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Eb/N
Fig. 10: The effects of changing the forgetting factor in the RLS
algorithm on the overall BER performance.

Viterbi decoder and different estimators were employed to
estimate the channel impulse response and it was shown that
using the Kalman filter leads to the best BER performance.
Based on the fading properties and the Doppler frequency shift
an ARMA representation for the channel impulse response was
derived in section 3. This channel model makes it possible to
implement the Kalman filter. It was important to have a correct
estimation of the Doppler frequency shift at the receiver. By
considering the effects of error in speed estimation, we
concluded that it is always better to overestimate the vehicle
speed. In the RLS algorithm choosing a proper value for A was
considered, and square root filtering, implemented in the form of
VLSI systolic architectures was proposed to combat the
complexity problems of the Kalman filter and the RLS algorithm.
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