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Abstract——The performance of the estimator used in the tracking of a fading channel
plays an essential role in many wireless receivers. The conventional Kalman filter is an
optimum estimator; however, it is computationally demanding and complex for real-
time implementation. In this paper a new approach is proposed for the implementation
of the Kalman filter based on differential channel states. This leads to a robust
differential Kalman filtering algorithm that can be simplified further to ease the
implementation without any major loss in performance. It is also shown that the
simplifications made to the differential Kalman filter lead to the Least Mean Squares
(LMS) algorithm, identifying it as a special case of the Kalman filter.

1. INTRODUCTION

Maximum Likelihood Sequence Estimation (MLSE) is the optimum detection
technique for digital signals corrupted by intersymbol interference (ISI) and
additive Gaussian noise. Generally all adaptive versions of MLSE receivers require
estimation algorithms for identifying time varying channels. In most wireless
systems, the quality of the channel estimation method has a strong impact on the
overall Bit Error Rate (BER) performance of the receiver. Therefore, a key factor in
the receiver design is the estimation of the fading channel with high accuracy [1].

Many types of estimation algorithms require some information about the time
varying parameters of the fading channel. This information is often in the form of
state space model parameters of the channel. The optimum Kalman filter requires
the exact parameters of the state space model and the second order statistics of the
random model-parameters. The RLS algorithm, as shown by Sayed and Kailath [2],
is a special case of the Kalman filter where the required information about the state
space model are simply replaced by constant values. This means that the RLS
algorithm is model dependent and since the actual model parameters of the system
are replaced with constants we would expect a degradation in the performance due
to a model mismatch [3].

In practice, a wide sense stationary uncorrelated scattering (WSSUS) model is
used for data detection over fading channels [1][4]. The assumption of wide sense
stationarity is somewhat controversial, since any change in the vehicle speed will
affect the maximum Doppler frequency, and this changes the statistics of the
channel. However, in practical situations the WSSUS model can be adopted,
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assuming constant vehicle speed for the duration of one or a few data frames.

An inherent difficulty associated with applying the estimation methods for
tracking the channel is that the unknown transmitted data is required for the
estimator adaptation. This information can be available to the estimator in one of
three forms: (1) as training symbols inserted in a data frame (symbol-aided channel
estimation)[5], (2) the detected data stream (decision directed mode) [6], (3) using
the joint data and channel estimation techniques [7][8], and this can be performed
in a per-survivor processing (PSP) fashion [9].

A bank of estimators are required to implement PSP, one for each survivor
sequence, for channel tracking and branch metric computation. By choosing the
Kalman filter for channel tracking, the complexity of the receiver can be
prohibitive, particularly for channels with a long impulse response duration. The
Kalman filter is computationally demanding and very sensitive to round-off errors.
The efforts to overcome the design complexity of the Kalman based PSP receiver
can be focused in two major directions. The first approach is to employ simpler
channel estimators, and this can be in form of seeking suboptimal alternatives to the
Kalman filter [3][2]. A second direction is to take advantage of recent advances in
VLSI technology in parallel information processing and proposing parallel
algorithms and structures for the implementation of Kalman filter [10]{11][12].

The purpose of this paper is to introduce a new approach to define the Kalman
filtering algorithm. Here we propose a different method to define the state space
model of the channel from what has been reported in the literature so far. To derive
the ARMA model of the channel impulse response, usually the consecutive
instances of the impulse response are used as the basis [12][13]. We show that by
choosing the impulse response and its time derivatives as an equivalent set of basis,
the Kalman filter algorithm remains unchanged and only new parameters are used.
With the new definition of states, the Kalman filter becomes more robust against the
simplifications made to reduce the implementation complexity. The complex
covariance matrix can be simplified to a reduced size real matrix to mitigate the
complexity. Also the state transition matrix can be rounded to have only one and
zero elements. The simplifications are aimed towards obtaining an LMS-type
algorithm from the optimal Kalman filter.

In section 2 the mathematical model considered for the problem will be
described. In section 3 the Kalman filter and its variants will be introduced for
channel tracking. Simulation results are explained in section 4 and the conclusion is
presented in section 5.

2. MATHEMATICAL MODELING

The MPSK complex data sequence {d;€ €} with the symbol peried T is
transmitted and received via a frequency selective fading channel. The equivalent
discrete time model for the adaptive receiver is shown in Fig. 1. The sampled

signal, z;, can be written as
q-1
G = XA Xt my 1)
i=0
where x; ; is the channel impulse response (CIR) at time & due to an impulse that
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Fig. 1: The adaptive receiver model for joint data and channel estimation.

was applied at time k-i, and the total length of the CIR is assumed to be g. The
additive white Gaussian noise, ny is a circularly symmetric complex Gaussian
process 6] with power spectral density N,,. In the channel estimator a hypothesized
value for dy is convolved with an estimate of the channel, resulting in Z, , which is
an estimate of the received signal. The difference between z; and %, is the error
ey, and it is used to update the channel estimates via the estimation algorithm. The
hypothesized transmitted data sequence can be available to the channel estimator as
in the PSP method [9], where a different hypothesized data sequence is assumed
along each branch of the Viterbi algorithm trellis diagram.

The channel is considered as WSSUS and its, xi ;, is a wide-sense stationary
Gaussian random signal and can be modeled with a third order AR representation
[7] as

Kpi = C1% 1,0 CoXp_g, i T C3Xp_3 i+ CaWy @
The circularly symmetric complex Gaussian noise process Wy ; is the driving
noise of the AR model. The CIR at time k can be defined in vector form as

T
X = [ X 00 X 15 s X, g -1] 3
where (.)Tdenotes the matrix transposition operator. Using (2) and (3) we obtain
Xp = C X 1+ 0Xp 5+ C3Xp_3+CgWy 4

where the vector Wi = [Wy 0 Wi 15 - Wk,q_l]T is a zero mean white complex
Gaussian process with the diagonal covariance matrix Q defined as
E{wkwfl} = Q8(k—1). Here, 8(k—1) is the Kroneker delta function, and ()
denotes Hermitian transposition. From (4) it is clear that the state of the channel at
time k can be expressed based on its 3 past consecutive values and we can write

Xpoq ol eI c31f| x, cyl
xp [ =110 0 fix [+ 0 Wiy ®)
Xr-1 0 1 0|[x, 0

where I and 0 are g X g -identity matrix and g X g -zero matrix, respectively.
Let’s define the 3g-dimensional vectors of the channel state and the input data
respectively as

378



T
X, = (x5, %1, %5 _,) (6)

2q zeros
Hk = [dk’ dk—l’ dk—2’ veey dk—-q+l’ O, O, ...,0 (7)
2q zeros
= |:‘Dk’ 0,0,...,0 ] ®)

where Dy, represents the nonzero part of the data vector. From (1) and (5) the state
space model of the fading channel can be described by the channel state equation
and the channel output equation as:

Xk+l = FXk+ka+1 (9)

2= Hi X, +my (10)

where F is the 3g X 3q transition matrix and G is the 3g X g measurement
coupling matrix.

3. ADAPTIVE TRACKING

The state space model of (9) and (10) represents a linear time-variant system
described by a Markov model of order three. In the following, first we introduce the
standard Kalman filtering solution for estimating the state vector of this system or
in other words for estimating the CIR of the fading channel. Then we will introduce
the idea of using differential states for this model and will study the practical effects
on performance and implementation.

3.1. The Conventional Kalman filter

The Kalman filter can recursively estimate the states of the linear system defined
in (9) and (10). The recursion equations of the Kalman filter are:

R, = H,P,H + N, (11)
e = 7, - H X, (12)
Xio1 = FX + FPHIR e, (13)

H ., -1 H H
P, = F(P,—-P H;R, HP)F"'+GQG (14)

where X, is the state estimate and P, is the state estimation error covariance
matrix. The Kalman filter is an optimum estimator that minimizes the mean squared
estimation error.

The Kalman filter is computationally demanding, and this limits its use in real-
time applications. The conventional Kalman filter is also very sensitive to round-off
errors and to maintain its stability, the algorithm has to be implemented with a
rather long digital word-length. In order to obtain a numerically accurate and stable
algorithm square-root solutions have been proposed for implementation of the
Kalman filter [14]. With recent advances in VLSI technology parallel information
processing has become more and more feasible, allowing for the implementation of
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dedicated systolic structures for square-root Kalman filtering [10]. However, It is
usually common practice to make a trade-off between cost and performance and
look for suboptimal versions of the Kalman filter trying to keep the performance
acceptable while reducing the implementation cost.

Another problem with the implementation of a Kalman filter for data detection
over fading channels is that it requires some information about the channel model,
such as F, G, @, and N,.. This information is not easily available at the receiver and
it has to be extracted from the received signal which leads to state estimation with
model uncertainty. In practice, it is reasonable to assume that the parameters of the
channel model are almost constant compared to the state variations over a certain
time interval. In this way constant channel parameters can be used in the Kalman
filter as long as they are valid, say, over one or a few data blocks. Some receivers
avoid this problem totally or partially by employing estimation algorithms that
require a minimum amount of a priori information about the channel, e.g. the LMS
algorithm only considers the received signal.

In the following we propose a solution to mitigate the above problems. This is in

the form of a change of basis in the state space model, and this leads to a simpler
implementation of the Kalman filtering algorithm.

3.2. The Differential Kalman Filter

We will show that the implementation of the channel estimation and tracking
process will be enhanced if we use another set of states in the state space model.
This is equivalent to choosing a new set of basis in the same space. The elements of
the new set of basis at time k are x;, and its first and second order time derivatives.
Let’s define the new 3g-dimensional channel state vector as

T
X, =[x, %1, %] (15)
T T T .T T 4T
=[xp Xy =X X — X4 (16)
It is easy to verify that
X, = TX, 17)
where the 3g X 3¢g transformation matrix is
100
T-1r 7o (18)
I-211

and T=T "L In general for an ng dimensional state vector the components of this
matrix can be expressed as

(—1)"“(;:1)1 j<i
T,; = .. (19)
0 Jj>i

By applying the above transformation to (9) and (10) the state space model can be
described with
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Xiv1 = EXi +Gwy g (20)

zy = H X, +n 1)
and the Kalman filtering algorithm of (11)-(14) will be transformed to
R, = HPHY +N, 22)
e, = 3~ Hi&x (23)
X1 = EX,+FPHIR, e, 24
P, = E(P,~PH{R, HPYE" + GOG" @5)

where F = TFT. G = TG »and p, = TPkTH' Also note that H,T = H,.
Hence, we realize that by using the above transformation the algorithms for
conventional Kalman filter and differential Kalman filter will be the same. In the
following we will see that in practice the performance of the differential method is
superior due to its robustness against numerical errors. Also we show that its
implementation can be simplified without a major loss in performance.

1) Rounding F to make an upper triangular matrix
The matrix F can be computed as

(e +cy+c3)l (—cy—2¢c)I 3l
E =TFT = |(c;+c,+c3— DI (—cy—2c3)I ¢3l (26)
(cy+ecy+e3=DI (mcy—2c5-1)1 c3d

We can show that in practical situations the components of this matrix can be
rounded to obtain an upper triangular matrix with all nonzero elements equal to
one. This is very appealing for the digital implementation of the algorithm. Fig. 2
shows the variation of three coefficients in the first row of E versus vehicle speed.
To obtain the coefficients Rayleigh fading channel, and a symbol rate of 25
ksymbol/sec in the 900 MHz band is assumed. As we can see all three coefficients
can be rounded to one for a wide range of vehicle speeds with a very small
approximation error, while in turn the matrix F is converted to an upper triangular
matrix as described above.

II) Forcing F to be an upper triangular matrix

The state transition equation of (20) can be replaced by another equation where the
F matrix is upper triangular without any approximation. Based on the definition of
differential states we can write

xk_+_] =xk+xk+1 = xk+xk+.fk_t1 = xk+xk+xk+kk+1 (27)
then it is easy to verify
Xt LIIx,| |¥p
Xry O LTy + 1%, (28)
[Xr 41 0017, |¥r4

or
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Fig. 2: Variation of the coefficients of matrix F with the vehicle speed.
(Rayleigh fading channel, Symbol rate = 25 ksymbol/sec, 900 MHz band,
cl =3,c2=-3,c3=1)

IIrr 1
Xy = (00X, + |1 %4 (29)
001 1

where ¥, is a zero mean white Gaussian process. Equation (29) describes the
state transitions and can replace (20) in the definition of the channel state space
model. This forces the F matrix to be upper triangular with only ones and zeros. In
(29), ¥, is arandom process and to implement the Kalman filtering algorithm its

that

Xp=x,=3x,_1+3x;_,—X;_; (30)
and to obtain @ we note that from (30)
Q= E{x,¥f} = 20R(0)-30R(1) + 12R(2)-2R(3) €2))

where R(j) = E{xkka + ;1 1s the autocorrelation matrix of the channel impulse
response vector. To calculate R(j) for different j values, one can multiply both
sides of (4) by xJH and get the expected value to obtain the following equation that
can be solved to find the desired values.

-1 el c,d 51 R(0) —c,0
cd (=11 51 0 R(D| _
eyl (cy+el -1 0 ||RQ2)|
c3l ol o -1 R(3)

(32)

[E— RN R — -

IIT) Simplifying the covariance matrix Py,

To reduce the computational burden of the differential Kalman filtering
algorithm (22)-(25), we can realize that after simplifying the F matrix, most of the
computational power is spent in computing P;. This is a 3¢ X 3g complex matrix
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with Hermitian symametry. We show that it is possible to consider a simpler form for
P, to simplify the calculations with a small effect on performance. The covariance
matrix can be considered as

Wy o d oy o By it
By = fouy T oy i d By (33)

Bi,if Ba il Bs il

where W, ., @;,,and B;, arereal scalers. This will simplify the computation of
the Kalman filtering equations drastically as q2 complex values are replaced by one
real scalar. To interpret the above simplification one can consider the state
estimation of (24) as two stages. First is the measurement update equation as

R = X+ BHIR ¢ (34)

where the channel estimate is updated based on the information of the received
signal and then the time update equation based on our knowledge of the system
model as

X1 = FXup (35)
Using (8) and (33) the measurement update equation of (34) can be viewed as

three LMS type update equations for the states and the differential states of
different orders

-1
Xy = X+ R Wy Diffey (36)
. =
Xy = X+ Ry oy  Dffey (37
. .l
Xy = X+ R By Die, (38)

where R;lul_k, R;lal,k , and R;lﬁl’k serve as the step-size parameter of the
LMS algorithm. However, these parameters are not fixed as in a regular LMS
method, and will be updated adaptively by the covariance equation of (25). It is
possible to simplify the computation of (25) one step further by reducing the matrix
I to one in F, Py and G and also approximating D/ D, with the constant value of
||dk||2 . In this case the size of the matrices in (25) reduces from 3gx3g to 3x3
leading to a simpler computation. Similar to the approach of Sayed and Kailath in
[2] we can see that the LMS algorithm, like RLS, is a simplified variant of the
Kalman filter. This can be verified if we let F be the identity matrix and in (33) have
all of the parameters but W = i ; equal to zero, and [ can be constant as in
LMS.

The conventional Kalman filter is very sensitive to numerical errors. The
simplification of (33) leads to very poor BER performance and occasional
divergence of the adaptive algorithm in our simulations of a channel estimator with
conventional Kalman filter. However the differential Kalman filter allows for the
above simplifications with a small degradation in performance as will be shown in
the next section.
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Fig. 3: (a) MSE in estimation and (b) receiver’s BER results for QPSK
modulation with Differential Kalman filter, Differential Kalman filter with
rounded F, and Differential Kalman filter with reduced P;. and normal E
(Vehicle speed = 100 km/h, and PSP is used for detection)

4. PERFORMANCE RESULTS

In the computer simulations, the modulation scheme employed is differentially
coherent QPSK, with a symbol rate of 25 ksymbol/s. As in the IS-136 standard, the
differentially encoded data sequence is arranged into 162 symbol frames. The first
14 symbols of each frame is a training preamble sequence to help the adaptation of
the channel estimator. The fading channel is simulated as a symbol-spaced two-
path model with time varying complex coefficients. The two fading paths are
independent with equal strength. The ISI at the receiver is due to the multipath
nature of the channel. The total length of the channel impulse response is 2 symbol
intervals and there are four possible states in the trellis diagram of the Viterbi
algorithm at the receiver. For each state in the trellis there are four possible
transitions to the four states in the next stage.

Fig. 3(a) shows the steady state average mean squared error (MSE) in the
estimation of the channel impulse response. It is clear that by simplifying P to a
real matrix with reduced size as described above, the change in MSE is negligible.
Also by rounding the F matrix there is one dB degradation in performance. Fig.
3(b) shows the bit error rate performance (BER) of a Kalman-based Viterbi
algorithm to detect the transmitted data. Also in this case the result of the above
simplifications is a degradation of only 1-2 dB in the BER performance.

5. CONCOLUSION

The differential Kalman filter was introduced using a new basis in the state space
model. The algorithm for this filter is similar to that of the conventional Kalman
filter. However, it proves to be more robust against simplifications made to mitigate
the implementation problems. The complex error covariance matrix was
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approximated by a real matrix of reduced size. The transition matrix was also
modified to contain ones and zeros which simplifies matrix multiplications. Finally,
we showed that the LMS algorithm can be obtained along with these
simplifications. This is similar to the approach of [2] and proves that LMS also
belongs to the family of the Kalman filter variants.
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