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Abstract

Joint data and channel estimation in a wireless
communication system and over frequency selective
Rayleigh fading channels can be performed by
implementing Maximum Likelihood Sequence Estimation
(MLSE) using the Per-Survivor Processing (PSP) Method.
However, PSP can be used only if there is one channel
estimation per symbol interval. In this paper we introduce
the Per-Branch Processing (PBP) method as a general
case of PSP, which has the advantages of PSP and allows
more than one estimation per symbol to improve the
receiver error performance in fast fading.

The Kalman filter is considered for channel estimation
and the overall bit error rate (BER) performance is shown
to be superior to that of detection techniques using the
RLS and LMS estimators. Three different square-root
methods for implementation of the Kalman filter are
analyzed and compared with the RLS and LMS algorithms
based on different number of bits required for
implementation.

Joint data and channel estimation
using PBP and PSP

For data detection over fast fading mobile radio
channels, MLSE is usually implemented via the Viterbi
algorithm and in the case of an unknown channel, an
estimate of the channel impulse response (CIR) is required
at the receiver. The state space model of signal
transmission in a wireless communication system over a
Rayleigh fading channel is shown in Fig. 1 [1]. This model
can be described by (1) and (2)

(1)
)]

Xpo1 = Fx +Gwy

z, = Hx,+n;
This is a linear time varying system where the state vector
x; represents the CIR. The measurement matrix H,

depends on the transmitted data sequence, and the received
signal z; can be assumed to be a noisy measurement of the
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state of the system, where n; is additive Gaussian noise. F
is called the state transition matrix and G is the process
noise coupling matrix. The vector w; is a zero mean white
Gaussian process.

Estimation methods can be employed to estimate the
channel impulse response x;, based on the noisy received
signal z;. However, the application of any estimation
method requires the measurement matrix or the vector Hy,
which depends on the transmitted data sequence, and the
transmitted data is not available at the receiver. This
problem is sometimes called “state estimation with model
uncertainty”.

A solution to this problem is proposed in [2] to
implement the channel estimation in the Viterbi algorithm
in a PSP fashion. In this method, to overcome the problem
of uncertainty in Hy, a separate estimator is required for
any of the hypothesized H; vectors on the survivor paths,
In this way, each estimator uses its own hypothesized data
vector for H}, and based on that, it gives an estimation of
the CIR. By this method, it is guaranteed that we are using
the data sequence of the shortest path for the channel
estimation along the same path, which is obviously the
best available information at the receiver. This method
also eliminates the problem of decision delay, since the
detected data associated with each survivor path is used
for channel estimation on the same path immediately.

However, the PSP method is limited to one channel
estimation per symbol. In [3], it was found that
improvement in the receiver error performance in fast
fading is obtained if the detector processes more than one
sample per channel symbol, and results in a substantial
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Fig. 1: Linear time varying model of signal

transmission over a Rayleigh fading channel.



lowering of the error floor. Hence, to achieve a better BER
result it is desirable to increase the number of samples per
symbol and have several channel estimations per symbol
interval. Here, we will introduce the general method of
per-branch processing (PBP) for more than one channel
estimation per symbol and we will show that in the special
case of one sample per symbol it reduces to the PSP
method.

The computational procedure of the PBP method for
three samples per symbol interval is shown in Fig. 2 (a).
The computation is on a trellis branch between states S;
and S;. There are three received samples (Z) and three
hypotl(lesized impulse response vectors (H) on this branch.
After receiving the first received signal sample, a Branch
Metric Generator (BMG) unit obtains a measure of the
distance between the hypothesized value and the received
value. At the same time an Estimator unit updates the
channel estimation based on the received signal and the
hypothesized H. The new estimation will be passed to an
accumulative BMG and another estimator to be processed
with the second received sample and hypothesized H. By
processing all three samples in three stages, as shown in
the figure, the branch metric is ready and after receiving
the branch metrics from other branches the procedure of
Add-Compare-Select can be started at node S; to find the
survivor branch. Once the survivor branch is known, the
channel estimation along that branch will be retained and
will be used as the output X from node ;. Since the same
routine has to be performed on all of the branches of the
trellis diagram it is called PBP.

In the simple case of one sample per symbol interval we
can consider Fig. 2 (b), in which only one estimator and
one BMG unit are used. In this case it is possible to reduce
the complexity and avoid unnecessary estimations. On all
of the branches we can first compute the branch metrics
and start the Add-Compare-Select procedures to find the
survivor branch to each node. Then only the estimators on
the surviving paths will be used to update the channel
estimation for the next symbol interval. This method is
PSP, where the number of estimations is reduced to the
number of surviving paths which is equal to the number of
states of the trellis. It should be noted that in the previous
case (Fig. 2 (a)) with more than one sample per symbol,
because of the data dependency it was not possible to
postpone the channel estimations until the branch metrics
are ready and the survivor path is known. By studying the
data dependency on this diagram we can realize that only
the last estimation could be deferred in this case.

Fig. 3 and Fig. 4 compare the results for the Kalman
estimator and the RLS estimator for the situation of one
channel estimation every symbol interval using the PSP
method and the situation of three channel estimations per
symbol interval using PBP, when DQPSK modulation is
employed. As we can see there is a difference of about 2
dB at a BER=10"* between the two methods for the
Kalman estimator, which in some cases, might be tolerated
to reduce the complexity of the receiver.

Any channel estimation algorithm can be utilized in the
above methods. The difference in the results will be due to

the tracking performance and precision of the estimators.
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Fig. 2: (a) Data flow for PBP with three samples per symbol interval (b) Data flow
for PBP with one sample per symbol interval which can be reduced to PSP.
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Fig. 3: The result of changing the

estimation rate for the Kalman estimator.

By using the channel model of [4] it is possible to employ
the Kalman estimator which is the optimal estimation
method and, as is shown in [4], its performance is superior
to that of other estimators.

For the computation of the branch metrics, the
Euclidean distance has been employed for the simulations
presented in this paper. This is an accurate measure for
Gaussian noise with constant variance. However, the noise
variance can be different from sample to sample due to
fading. The Kalman filter yields an estimation of the noise
variance as one of the intermediate results in the channel
estimation process. In this case, it is possible to employ
the log-likelihood function with the Kalman filter, where
the updated noise variance is used in the computation of
the log-likelihood function. The performance of the
Viterbi detector will improve by employing the log-
likelihood metrics, since the receiver is not assuming a
constant noise variance and an estimation of this value will
be updated by each channel estimation.

Another advantage of the PBP method is that it is
possible to employ the log-likelihood metrics with PBP
and the Kalman filter. In this case, for computing the
branch metrics the estimated noise variance is obtained
from the Kalman filter, while, it is not possible to postpone
the channel estimations and implement the PSP method.

Implementation of the channel estimator

The RLS and LMS algorithms are widely used in the
estimation of CIR. The RLS algorithm is almost identical
to the measurement update equations of the Kalman filter,
and the Kalman filter can provide more accurate
estimations of the CIR [5]. In this section we will study the
effects of accuracy in channel estimation on the overall
BER performance of a receiver in which joint data and
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Fig. 4: The result of changing the

estimation rate for the RLS estimator.

channel estimation is performed by the Viterbi algorithm
in a PSP or PBP fashion.

The RLS algorithm and the Kalman filter are sensitive to
round-off errors, and different implementation methods
may result in different numerical stabilities for these
estimators. The square-root filter implementations have
generally a better error performance over other
conventional methods. For the implementation of the RLS
algorithm and the measurement update equations of the
Kalman filter a modified version of the square-root method
proposed in [6] is adopted. This algorithm is based on
working with LDU factorizations of the covariance
matrices. Parallel structures are proposed in the literature
for the implementation of this algorithm for the Kalman
filter [6], and for the RLS algorithm [7].

The above algorithm would be sufficient for RLS but to
complete the implementation of the Kalman filter an
algorithm is required to compute the time update equation.
Different computation methods could be considered for
implementing the time update equations. These
computation methods are generally equivalent and lead to
the same result if carried out using full precision and
sufficient number of bits per word. However, to reduce the
hardware complexity it is usually desired to employ as few
number of bits per word as possible. By reducing the
number of bits, different implementation methods show
different robustness against numerical errors. Three
different computational methods for the time update
equations are considered in this paper and the overall
effects of the numerical stability on the BER performance
of the PSP receiver for data communication over a
wireless mobile radio channel is studied.

The first method for implementing the time update
equations employs the weighted Gram-Schmidt
orthogonalization [8], to compute the covariance update
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equation of the Kalman filter based on a block matrix
factorization. The second method is based on an L-D
correction algorithm explained in [9], where it is shown to
have substantial computational saving when compared
with the Gram-Schmidt algorithm if the process noise
covariance is time invariant. The third approach is the
direct computation of the covariance update equation. The
covariance matrix has to be factorized in the LDU form
using a factorization algorithm presented in [10], and this
method requires less computation relative to the previous
methods.

In Fig. 5 the mean square error (mse) for the above
Kalman estimators along with the RLS and LMS
algorithms are illustrated for different number of bits per
mantissa in the floating point operations. It is clear from
the figure that the minimum achievable mse is lower than
that of LMS and RLS algorithms, but a larger number of
bits is required for the Kalman filter. Direct
implementation of the Kalman filter which has the least
complexity requires at least 26 bits per mantissa while two
other methods require 22 bits.

For the application of joint data and channel estimation
using the PSP method, the effect of reducing the number
of bits on the overall BER performance is shown in Fig. 6.
We see that using the Kalman channel estimator can lead
to a good BER performance, while requiring a longer
word length compared to LMS and RLS algorithms. Also
the required mantissa length is less than what we obtain by
observing the mean square error, and we can see that the
methods of [8] and [9] are very close in performance and
are much more efficient than the direct method.
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